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Abstract: Динамиката на системи от три или повече тела обикновено включва физически процеси, 

известни като резонанси на средното движение и секулярни пертурбации. Първите се появяват, когато 
двойка тела имат орбитални периоди, чието съотношение може приблизително да се представи като 
съотношение на две малки цели числа. Вторите са съществен фактор при изследване на дълговремевата 
еволюция на системата. Динамичната еволюция на над половината от известните планетите в мулти-
планетарните извънслънчеви системи се доминира от секулярните резонанси. Най-често големите 
ексцентрицитети на планетарните орбити поставят под съмнение полезността на традиционната 
секулярна теория на Лагранж-Лаплас при анализа на движение. Тази теория може да бъде обобщена до 
четвърти порядък в ексцентрицитета, след което да се сравнява с числените резултати. Част от 
изводите, до които се стига в резултат на тези сравнения, са - Лагранж-Лапласовата теория на 
секулярната динамика е слаб индикатор (инструмент) за предсказване на секулярната динамима на 
извънслънчеви планетарни системи, но е полезен инструмент при прецизното определяне на 
дълговремевата динамична еволюция на системи от малки тела с орбити, близки до кръговите. 

Secular Interactions - Basic Theory 
 

Here we outline the basic theory of secular interactions as applied to the planetary systems. Since this 
topic has been well studied, the review and the results are brief. . 
The equations of motion for eccentricity  (to the second order in eccentricity and inclination angle) and 

argument of periastron 
je

jϖ  decouple from those of inclination angle and the ascending node. Following 
standard convention (Murray & Dermott 1999), we work with the variables defined by: 
(1) iiiiii ekandeh ϖϖ cossin ≡≡ , 
where the subscript i refers to the i-th planet in an N planet system. The basic equations of motion for the 
theory can then be written in the form 
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where  is the secular part of the disturbing function,  is the mean motion of the i-th planet and  is its 
corresponding semi-major axis. To consistent order in this approximation, the relevant terms in the disturbing 
function take the form 
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The physics of these interactions is thus encapsulated in the N×N matrix , where the number N of planets 
in the system is usually N = 2 or 3 for the systems observed, to date. The matrix elements can be written in 
the form 
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In the diagonal matrix elements (eq. [4]) it is included the leading order correction for general relativity (c is 

the speed of light). Although these terms are small, 12
* <<≡
iac

GM
μ , such small corrections to the 

eigenfrequencies can be important, especially when the system is near resonance. The quantities ikα  are 

defined such that )/(/ ikkiik aaaa=α  if  )( ikki aaaa << . The complementary quantities ikα  are 

defined so that ikki aaik αα == / ia < if , but ka 1=ikα  for ik aa < . Finally, the quantities b  and 

 are Laplace coefficients.  
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With the above definitions, the resulting solution takes the form 
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where the iλ  are eigenvalues of the matrix  and the ijA jiΛ  are the corresponding eigenvectors. The 

phases iβ  and the normalization of the eigenvectors are determined by the initial conditions, i.e., the values 

of eccentricity  and argument of periastron je jϖ  for each planet at 0=t . 
 

Applications to Extrasolar Planetary Systems. Eccentricity Distributions and Secular Time Scales 
 

 We use the theory of secular interactions to show the relationship between the observed values of 
eccentricity and the underlying distribution of eccentricities that characterize the systems. We use 
interactions, and their absence, to place new constraints on observed multiple planet systems. We can find 
constraints on the possible existence of additional small (terrestrial) planets in these systems by requiring 
that any such planets must reside far from a secular resonance.  As an application of secular interaction 
theory, we use the formalism described above to calculate the variations in eccentricity in a sub-sample of 
observed extrasolar planetary systems. The eigenvalues iλ  for the multiple planet systems calculate and 
convert into time scales for a collection of 16 observed multiple planet systems. Most of these multiple planet 
systems have secular interaction time scales in the range yr. These time scales are much longer 
than any possible observational baseline (tens of years), but much shorter than the system lifetimes (which 
are typically several Gyr). The shortest secular time scale occurs for the GJ 876 system. Although the 
dynamics of this system are dominated by the 2:1 resonance between planets “c” and “b”, the secular 
interaction time 

53 10−10

4.4=τ  yr gives an excellent estimate of the time scale for dynamical interaction in the 
system. Indeed, radial velocity fits to the system must take into account the planet-planet interactions in 
order to obtain an acceptable fit. 

These secular interaction times are thus long enough that observations can determine the eccentricity 
(and longitude of periastron) with high accuracy at the present epoch. Over much longer time scales that are 
not observationally accessible, however, the eccentricity (and longitude of periastron) will vary according to 
the appropriate secular cycles. As a result, attempts to explain the observed (a, e) plane must take the 
possibility of secular variations into account. The effect of secular interactions on the observational 
interpretation of these systems is that the measured eccentricity values are a particular sampling of an 
underlying distribution. Within the context of leading order secular theory, the distribution of eccentricity is 
determined by the above formalism. For each of the observed multiple planet systems considered here 
calculates the expected time variations of eccentricity and longitude of periastron according to secular 
theory. From this time series were extracted the mean eccentricity e , the variance eσ  of the distribution, 

the minimum eccentricity value  and the maximum value . The difference between the observed 
values and the mean eccentricities averaged over many secular cycles can be substantial (more than a 
factor of two). The width of the distribution can also be significant. 

mine maxe

For the case of two planet systems, the formalism produces simple analytic expressions for the 
parameters of the eccentricity distribution. The distribution itself can be derived by taking the solution of 
equation (6) and solving for the eccentricity as a function of time. Since time is distributed uniformly, the 
resulting expression can be solved for the corresponding distribution of eccentricity, which can then be 
written in the form 
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where  are the eigenvectors. This form of the eccentricity distribution (for the i-th planet) is valid between 
the extremes given by 

jiΛ
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The mean value of the distribution can be evaluated from its definition ∫= dededPee )/(  and takes the 

form 
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Where  is the elliptical integral of the second kind (Abramowitz & Stegun, 1970) with parameter )ˆ(mE
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evaluating . The corresponding variance of the distribution is given by 
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For two-planet systems, it has verified that these expressions for the mean, extrema, and variance of the 
distribution are in good agreement with those found via sampling of the secular solutions as described 
above. 
 

Conclusion 
 

Through dynamical interactions, described here using secular theory, the orbital eccentricities in 
multiple planet systems vary over secular time scales. The eccentricities measured by ongoing planet 
searches represent the current eccentricity value, which is drawn from a wider distribution of values sampled 
by the planet. In other words, the eccentricities in multiple planet systems should not be considered as 
particular values, but rather as distributions of values. The widths of these eccentricity distributions can be 
substantial and it has verified that secular theory predicts distribution widths that are in good agreement with 
direct numerical integration. For the simplest case of two planet systems, the resulting distribution of 
eccentricity can be found analytically (eqs. [7 – 10]). The time scale for secular eccentricity variations is 
typically thousands of, much longer than observational survey time scales (tens of years) and much shorter 
than the system lifetimes (few Gyr). Secular interactions can add to our understanding of these forthcoming 
multiple planet systems in a variety of ways. In trying to find theoretical explanations for the observed orbital 
elements, one must take into account the distributions of eccentricities driven by secular interactions. In 
systems with known giant planets, the search for Earths can be guided by studying the forced eccentricity 
variations. In other systems, we can deduce the presence or absence of additional (undetected) planets — 
or at least constrain their properties — through examination of the properties of the detected planets. Over 
longer time spans, secular interactions combine with tidal circularization and energy dissipation processes. 
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